
,. Systems (

Optimization

Laboratory
' • OTIC FILE COPY

00

00
N
CN

DTIC
OV 15 MW

Department of Operations Research
Stanford University
Stanford, CA 94305

-Ap r'-d pub i -r III I

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

A Sequential Quadratic Programming Algorithm Using
an Incomplete Solution of the Subproblem

by
Walter Murray* and Francisco J. Prietot

TECHNICAL REPORT SOL 90-12

September 1990

DTICELECTE

* Research and reproduction of this report were partially supported by the National Science Foun-
dation Grant DDM-8715153 and the Office of Naval Research Grant N00014-90-J-1242.

t Research partially supported by a grant from the Bank of Spain.

Ary opinions, findings, and conclusions or recommendations expressed in this publication are those
of the authors and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM USING
AN INCOMPLETE SOLUTION OF THE SUBPROBLEM

WALTER MURRAY* AND FRANCISCO J. PRIETOt

*Systems Optimization Laboratory

Department of Operations Research
Stanford University

tDept. de Automitica, Ingenieria Electr6nica e Inform'itica Industrial

E.T.S. Ingenieros Industriales
Universidad Polit6cnica, Madrid

Technical Report SOL 90-12
September 1990

-Y Abstract

A feature of current sequential quadratic programming (SQP) methods
to solve nonlinear constrained optimization problems is the necessity at
each iteration to solve a quadratic program (QP). We show that if the QP
subproblem is convex and an active-set method is used to solve it, then
there exist iterates other than the minimizer that may be used to define a
suitable search direction. None of the usual. properties of an SQP method
are compromised by the new definition of the search direction.
We derive some new properties for an SQP method that uses a particular
augmented Lagrangian merit function. Specifically we show, under suitable
additional assumptions, that the rate of convergence is superlinear. We also
show that the penalty parameter used in the merit function is bounded.

1. Introductidn

The problem of interest is the following:

minimize F(x)
xE3- NP
s.t. c(x) > 0,

*Research supported by the National Science Foundation Grant DDM-8715153 and the Office of Naval
Research Grant N00014-90-J-1242.

t Research partially supported by a grant from the Bank of Spain.

mm • i 1

9

where F : -_ R and c : Rn , Rm . More specifically, we are interested in computing x*,
a first-order KKT point of NP. Such points are feasible and satisfy the following conditions:

VF(x*) = Vc(x*)TA*, A*ci(x*) = 0 i = 1,...,m

for some nonnegative multiplier vector A* E R'. Since we shall not assume second deriva-
tives are known, this is the best that can be achieved, and so whenever the torm "solution
point" is used in the following sections, what will be meant is a first-order KKT point of
NP.

We study the convergence properties of a sequential quadratic programming (SQP)
algorithm in which the quadratic programming subproblems generated are convex. The
unique feature of the algorithm studied is that the search direction in a given iteration is
computed as an "incomplete solution" of the quadratic subproblem. A precise definition of
the term "incomplete solution" will he given in Section 2.

Typically SQP algorithms generate a sequence of points {xk} converging to a solution,
by solving at each point, Xk, a quadratic program (QP) of the form

minimize VF(xk)Tp+ "pTIkp Q
PEW'2T~PQ
s.t C(Xk) + VC(Xk)p >_ 0

for some positive definite matrix Hk. Let Pk (referred to as the search direction) denote the
solution to QP. The next point in the sequence is defined to be the result of a linesearch
from xk along Pk, in such a way that the value of a certain merit function is decreased.

A number of different merit functions have been proposed. The one studied in this
paper is that analysed in [GMSW86b] and used in the algorithm NPSQP. It is similar to
merit functions proposed by Wright [Wri76] and Schittkowski [Sch8l].

Although our primary interest is this specific merit function, we also shc%v (Section 5)
how the ideas discussed can be extended to the use of other merit functions.

SQP algorithms in general and NPSQP in particular are viewed by many as the best
approach to the solution of NP when n is small (< 200). As the size of the problem grows,
usually so does the relative importance of the effort to solve QP when compared to the total
effort. Indeed for many large problems the effort to solve QP dominates the total effort.

Because the unique minimizer of QP is used to define the search direction, it is not
necessary in any theoretical discussion of an SQP algorithm to define how the QP sub-
problem is solved. In practice by far the commonest techniques used to solve QPs are
active-set methods. The implementation of NPSQP called NPSOL uses such a method.
For a comprehensive survey of active-set methods see [GMW81], [Fle87] and [GMSW881.
When an active-set method is used the potential number of iterations to solve a QP grows
exponentially with n. In practice the number of iterations grows much more slowly than
exponential (if this was not the case active-set methods would be hopelessly inefficient).
Nonetheless, the number of iterations required to solve a large QP is usually large. In any
implementation of an SQP method it is necessary to limit the number of iterations allowed
to solve a given QP subproblem. If the QP solition process is terminatd prematurely the

1 Introduction S

SQP algorithm may break down. It is in part for this reason that the development of SQP
methods for large-scale problems has been inhibited. Even for small problems there are
occasions when the number of QP iterations are excessive. Since the definition of "small"
continues to increase as computers become more powerful we can expect the cost of solving
the subproblems to grow in importance.

Typically the number of iterations to solve the QP subproblem is large in the initial it-
erations and falls exponentially. Near the solution only a single iteration is usually required.
A natural question is whether the effort to solve the QP subproblem is warranted far from
the solution when the information used to construct the subproblem may be unreliable. We
present an alternative definition of the search direction that is not based on the minimizer
of QP.

Our goals can be summarized as being:

" The derivation of a global convergence proof for the algorithm.

• A proof of superlinear convergence under additional assumptions.

" A proof that the penalty parameter used in the merit function is bounded.

Incomplete solutions for QP subproblems

The great majority of SQP algorithms in the literature define the search direction from a
minimizer of the QP subproblem, although there have been some proposals to terminate
the solution process for the QP subproblems early. An approach solving QP subproblems
inexactly is described in Dembo and Tulowitzki [DT85], where for a generic SQP algorithm
an early termination rule is given in terms of the norm of the reduced gradient for the
subproblem. This rule gives a search direction Pk satisfying the condition

JJpk - A ll- =o(JJPkl),

where p* denotes the minimizer for the kth QP subproblem.
We follow a different approach, presenting an early termination rule that is constructive

in nature, and that has a guaranteed bound on the effort necessary to satisfy it. If the
solution process is terminated early, the search direction for the outer iteration (the step in IWAV00
the original variables) is defined as the "total" step taken in the QP subproblem up to that "_
point. The characteristics of the point at which the termination takes place clearly depend
on the specific strategy used to solve the QP subproblem. In the course of solving a QP an or
active-set method generates iterates that are stationary points. We show that such points
may be used to construct a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP algorithm C3
in a number of critical ways. Not only is the search direction different, but also the QP 0

multipliers will not be available. The merit function of interest requires the definition of a
search direction in the space of the multipliers. In NPSQP this direction is defined using
the QP multipliers. The proof of convergence for NPSQP makes use of the fact that the I/

ty Codes
Avall and/or

ist Specla

4

QP multipliers are positive. The consequences of terminating the QP solution process early
are therefore far reaching.

The remainder of this paper is organized as follows. Section 2 describes the form of the
general algorithm, and presents the conditions on the search direction and the multiplier
estimate. Section 3 studies the convergence properties of the algorithm; it is shown that
such an algorithm is globally convergent. In Section 4 we show that the algorithm converges
superlinearly. We also show that the penalty parameter used in the merit function is
bounded. Section 5 establishes the convergence of algorithms that use merit functions
belonging to a certain class (that includes the t, merit function, for example). Finally,
Section 6 presents numerical results obtained from an implementation of the first algorithm.

2. Description of the algorithm

This section introduces the proposed algorithm. The algorithm obtains the search direction
from an incomplete solution of QP. The iterates are determined by conducting a linc earch
on the following merit function:

L,(x,A,s,p) = F(x) - AT(c(x) - s) + jp(c(x) - s)T(c(x) -8) , (2.1)

where s > 0 are slack variables, and the scalar p is known as the penalty parameter.
The search is performed on an expanded space, including the Lagrange multiplier es-

timates A, and the slack variables s. The symbols p, and q will be used to denote the
components of the search direction on the corresponding subspaces. In this case, the value
of the merit function as a function of the steplength will be denoted by

q(a) =_ LA(x + ap,A + a ,s + aq,p). (2.2)

The derivative of 4> with respect to a is denoted by 0'.
The following conventions will be used in the rest of the paper:

gk = VF(xk), Ak =_ VC(Xk), Ck _= C(Xk),

although the last two symbols, Ak and ck, will also be used with the same meaning but
restricted to the set of active constraints at the given point. The term active constraint will
be used to designate a constraint that is satisfied exactly at the current point (ci(x) = 0
in NP, or aTip = -ci in QP), and the set of all constraints active at a given point will be
referred to as the active set at the point.

The objective function for the QP subproblem will be denoted by Tkk(p),
Ok(p) =-fp + p kp.

Sometimes, t0 will denote the function of one variable Ok(a) = Ok(p + ad). Finally, sym-
bols of the form abc indicate fixed scalars related to properties of the problem, or the
implementation of the algorithm, where "abc" identifies the specific scalar represented.

2 Description of the algorithm 5

The algorithm

The following is an outline of the algorithm, the details are given in subsequent sections.
Let {Hk} denote a sequence of symmetric matrices whose smallest eigenvalue is positive

and uniformly bounded away from zero and whose largest eigenvalue is uniformly bounded.
The algorithm proceeds through the following steps:

(i) Set p-1 = 0. Choose xo, A0 and po > 0. Set k = 0.

(ii) At each point Xk, form the QP subproblem

minimize gTp+ pTHkP

subject to Akp >_ -Ck,

and from an incomplete solution determine Pk satisfying certain conditions. Compute
a vector of multipliers Ilk satisfying a second set of conditions. The precise conditions
that Pk and Pk need to satisfy are given later in this section. If Pk = 0, set Ak = Pk

and terminate. Otherwise, compute Ik = - Ak.

(iii) Compute sk from

max (0, (ck)i) if Pk-1 = 0,

(5k)0i max (0, (Ck)) otherwise.
Pk-1

Find Pk such that k(O,Pk) < -1 Pkpk.

Compute qk from
qk = Akpk + Ck - sk. (2.3)

(iv) Compute the steplength ak. The termination conditions for the linesearch are as
follows:

If
0(1) - (0) < a'0'(0) (2.4)

set ak = 1. Otherwise, find an ak E (0, 1) such that

< *k) - 0(0) kO'(0) (2.5a)
10'(ak) >! 7700(), (2.5b)

where 0 < a< 7 < .

(v) Update Xk and Ak using

Xk+l (Xk (Pk
14+1 A,, +a, Cf jG

9k sk qk /

Set k - k + 1 and repeat steps (ii) to (v) until convergence is reached.

The definition of the search direction

In each iteration the search direction is constructed from the information obtained when
solving the QP subproblem by an active-set method. Information available at the point the
algorithm is terminated is used to construct Pk in the way indicated by the following steps.
We have omitted the subscript k corresponding to the iteration number.

(i) An initial feasible point pO for the QP subproblem is obtained.

If the minimizer for the QP is used to determine the search direction, then, given
the uniqueness of Pk, the choice of p0 is irrelevant. When an incomplete solution of
the QP subproblem is used to define the search direction, the choice of p0 becomes
critical. If we determine the search direction from a stationary point that is not a
minimizer, the sequence of stationary points that we compute depends directly on the
value of p0 . We wish to define the initial point in such a manner that all stationary
points are satisfactory points at which to terminate the solution process. We require
11p0 ll to be small whenever the points Xk are close to 1, a stationary point of NP.

Define the vectors A and r to have components

9i max(O, ci- pi),
i - si if li - si < li - sil,

i -{ ci - .i otherwise;

where p denotes a multiplier estimate such that the following property holds:

IiXk - ill -4 0 * lick - §kll -- 0.

From this definition, r has the following property:

jIc-II : lrll _ Ic - sll. (2.6)

The following condition on p0 ensure our objective:

e For some constant 3pCs > 0,

H0Ip < pCllrll. (2.7)

(ii) A sequence of feasible descent steps are taken and the QP algorithm is terminated at
a stationary poiPt 0 for the QP subproblem.

(iii) If the stationary point is a second-order KKT point of the QP subproblem, the search
direction is computed as p = P.

(iv) If the stationary point is not a second-order KKT point, the multiplier vector at the
stationary point must have some components that are negative. In this case, we need
to compute a vector d and a scalar a with the following properties:

2 Description of the algorithm 7

" d is feasible with respect to the active constraints, Ad > 0, and its norm is
bounded above and below, that is, for some constants 3,,d > ,d > 0 it holds
that)3 ,d _ Ildjl > A3 nd. It is assumed without loss of generality that 03Id _ 1,

in order to simplify the arguments in the proofs.

" The rate of descent along d is sufficiently large. If 0(0) = (1+ (d), it is required
that

0'(0) = (HP + g)Td < -d.,c lnaXip- (2.8)

for some constant IOdsc > 0.

" The step a is taken as the step to the minimizer of t'((), if it is feasible. We
have

a = min(ac, am, aM),

where ac is the step to the nearest inactive constraint, aM > 0 is a specified
bound on the largest acceptable step, and

am = 0'(0) (2.9)oto- dT d .

It is a desirable property to avoid having search directions with very small norms, un-
less the corresponding point is close to a solution. The following definition is sufficient
to ensure this property:

S/I + ad if I1111 < t3,ilJjP + adj, (2.10)

P I P otherwise,

for some constant 3,1p > 0. It will be assumed that ,1p is chosen so that 3 > 1.

The multiplier estimates

Step (ii) of the algorithm requires not only a search direction Pk, but also an estimate ilk

of the Lagrange multipliers at the current point. The QP algorithm may terminate at a
stationary point, so a natural choice would be to use the multipliers of the stationary point
as the estimate, but in general these may not be the best possible choice, as they may be
negative, or the active set associated with the search direction may not in some cases be
the same as the one for which the multiplier was obtained. The following conditions on Ilk
are sufficient to ensure that the algorithm has the desired convergence properties.

MCI. The estimates are uniformly bounded in norm.

MC2. I11k - A*I = O(JIPkiI), where A* denotes the multiplier vector associated with the
solution point closest to Xk.

MC3. The complementarity condition (Akpk + ck) = 0 is satisfied at all iterations.

Condition MCI and the form in which the multiplier estimates are updated imply {Ak}
are uniformly bounded. This result is given as Lemma 4.2 in [GMSW8iouj.

8

Lemma 2.1. For all k > 0,
IAk 11 < max I1I 11 .

-<k-i

and hence JJAkJ is bounded for all k (by convention p-1 =- AO).

Second-order information

The condition imposed on {Hk} is that the matrices in the sequence are positive definite and
bounded, with bounded condition number. This assumption is identical to the one made
for NPSQP. In practice, such a sequence may be generated (see (GMSW86a]) by updating
a quasi-Newton approximation to the Hessian of the Lagrangian function or the Hessian of
the augmented Lagrangian function in each iteration together with certain safeguards.

From this condition, some quantities will be uniformly bounded in the algorithm. The
notation introduced below is used throughout for these bounds.

f31,H is an upper bound for the largest eigenvalue of H: pTjtp < 01"HIlpII2.

/3 ,,H is a positive lower bound for the smallest eigenvalue of H: pTtlp >!/3,,HIIPII'.

3. Global convergence results

The results in this section establish global convergence properties for the SQP algorithm
under study.

Assumptions and bounds

We make the following assumptions:

Al. Xk lies in a closed, bounded region 0 C Wn, for all k.

A2. F, ci and their first and second derivatives are continuous and uniformly bounded in
norm on 1.

A3. The Jacobian corresponding to the active constraints at any limit point of the sequence
generated by the algorithm has full rank.

A4. A feasible point exists to all the QP subproblems.

A5. Strict complementarity holds at all stationary points of NP in Q.

A6. The reduced Hessian of the Lagrangian function is nonsingular at all first-order KKT
points of NP.

From these assumptions, several quantities are uniformly bounded in the algorithm.
The first two bounds follow from assumption A2; the third follows from A3.

m,,c is a bound for the norm of the constraint vector: ijckli < imc.

3 Global convergence results 9

3nmg iq a bound for the norm of the gradient: l19kll -< 3nmg.

/3 nmu is an upper bound for the norm of the multipliers corresponding to a minimizer of
the QP subproblem: llfikll <3 m u.

Properties of the search direction

The first set of reslts explores the relationship of stationary points of the QP subproblems
and stationary points of NP. The significance of this relationship is due to the fact that
the search direction is obtained from information available at a stationary point of the QP
subproblem. The results shown below are similar in spirit to those in Robinson [Rob74].
They will be used to show that the value of IlPkll is "small" if and only if we are close to
a solution point, with corresponding implications regarding the identification of the correct
active set.

Lemma 3.1. For any x E Q?, let p be a stationary point of the QP subproblem at z. For
all c > 0 there exist a constant b > 0 and a point i such that

1lh -< = liX - -il < '

where x is a stationary point for the NP, with the same set of active constraints as p, if the
Jacobian of the active constraints at i is nonsingular.

Proof. Assume that the result does not hold; then there exist sequences {Pkk=l , and
{xk}k=l , such that pk is a stationary point of the QP subproblem at Xk satisfying hlPkjl -- 0,
and IlXk - ill > c for some c > 0.

A convergent subsequence can be extracted from {k), using the compactness of Q.
Select now a sub-subsequence having fixed active set that is a subset of the active set at
the limit point 1. Such a subseqence must exist since there only a finite number of choices
of active sets.

If we take limits along this subsequence of

Akpk + Ck >_ 0

it follows from llpkll - 0 and assumption A2 that i must be feasible.
If the Jacobian of the active constraints is iionsingular at 1, it follows from

HkPk + 9k = ATPk

that there exists a subsequence along which {k} converges, Pk -- p. Taking limits along
this subsequence,

This result implies that i is a stationary point of NP, contradicting the assumption.
To show that the set of active constraints should be the same for p and +, assume that

sequences as described above exist, but that the set of active constraints at each Pk is not

10

the same as the set of active constraints at i. As IIPkjj -- 0, the set of active constraints
at each pk must be a subset of the active constraints at i; but if it is a proper subset, then
there must exist an index i, active at i, such that (j'k)i = 0 for large enough k, and this
will imply fii = 0, violating the strict complementarity assumption. I

The assumptions on the form of the problem guarantee that large enough steps can
be taken from stationary points in the QP subproblems when the points considered are
not close to solutions for the problem. The algorithm makes use of this property to move
away from stationary points for NP. The next resuit establishes the existence of some of the
neces-,.ry bounds.

Lemma 3.2. There exist positive values /sp, and O.p~n, such that for all stationary points
;i that have inactive constraints

min i > Ospc,i:c, >0

and for those stationary points having some negative multiplier element,

maxA- >)3spm.

Proof. Assume that there exists a sequence {xk} of stationary points of NP in 0 such that

main Ck, 0.
i:Ck >0

From the compactness of Q, a convergent subsequence can be extracted having fixed
active set, and such that the minimum is always achieved for the same constraint (or set of
constraints). Let £:* denote the limit point. It follows from Lemma 3.1 and assumption A3
that :' is a stationary point of NP. At this point assumption A5 will be violated, as the
corresponding constraints are active, but have zero multipliers.

If the sequence is such that
maxjP -+0,

usiig the same construction assumption A5 will again be violated at i*, as at least one of
the multipliers corresponding to an active constraint will be zero. I

We now proceed to establish that if the norm of the search direction in any given iteration

I PklI is small enough, then the correct active set must have been identified. If the norm of
the stationary point where the search direction is computed, V,3O, is bounded away from
zero, then (2.10) implies that JJPkIJ is also bounded away from zero, and so in the proof of
this result we consider only those iterations in which 1173k l is small.

From Lemma 3.1 and A3 we know that if this norm is small, we must be close to, i, a
stationary point of NP, and in that case we can use the results from Lemma 3.2 to bound
the size of the search direction.

Lemma 3.3. There exists a value c' > 0 such that if IIPJp: <c" then Pk is a minimizer of the
QP subproblem and the correct active set at a solution has been identified. Also, IIPkjI = 0
if and only if Xk is a first-order KKT point of NP.

3 Global convergence results 11

Proof. From Lemmas 3.1 and 3.2, there exist positive constants IOspd and b0 such that if
IIPkII _< 6 and Pk was not obtained as the minimizer of the QP subproblem, then

V(Pk) - O(p,) > ,pd, (3.1)

and from the continuity of 4, there exists a 6 > 0 such that Ilik - PkII > 6.
Define 6

min(6O,).

If II1II < /30, then 6Ipkll-> II~k -pkll- I1 I > >

If 11fpkII > /0, then from (2.10),

Ipkll>II -l>-jkj > r

and thus in all cases the final point obtained has norm bounded away from zero.
If Pk is obtained from the minimizer of the QP subproblem, then Lemma 3.1 can be

used directly. Assume that a sequence of points {xk} exists such that IIPkjI - 0, and all Pk

are obtained as the solutions of the corresponding QP subproblems, but the active sets do
not correspond to the one at a solution. By extracting a subsequence having a fixed active
set and taking limits, a solution for the original problem with that active set is obtained
(from assumption A3, it must hold that the multiplier vectors converge to the multipliers
at the limit point), contradicting the hypothesis. Hence, a lower bound for IIPkII must also
exist in this case.

For the second part of the lemma it follows from the previous remarks that Pk = 0 if
and only if Pk is a solution of the QP subproblem. Furthermore,

Pk = 0 is a solution of QP * g - Ajpk, Pk _ 0, Ck >_ 0, /IkCk = 0

4* Xk is a first-order KKT point of NP,

completing the proof. I

Equivalence of sequences

For a given sequence {xk}, the next result establishes the equivalence between the sequences
{xk - x*} and {Pk}.

Lemma 3.4. If x* denotes the solution point closest to Xk, then there exists a constont
AMp, independent of k, such that

Ixk - x*ll S MpIIPkjI. (3.2)

Proof. The proof is in essence the one given for Lemma 4.1 in [GMSW86b]. I

12

Descent properties

We need to impose some condition on the direction Pk to ensure that adequate descent can
be obtained in each iteration. To be precise, it is necessary to satisfy in each iteration the
bound on the directional derivative given in step (iii) of the algorithm.

The next lemma shows that if the starting point for the QP subproblem is selected as
indicated in Section 2, the search direction satisfies a certain bound that will be shown to
imply the desired result. Recall that rk was the quantity introduced in Section 2 to provide
a bound for the norm of the initial point pk, and that its most relevant property for the
proofs that follow is its relationship to Ck - Sk, given by (2.6).

Lemma 3.5. There exist constants f 1 > 0, I32 2 0, and initial points for the QP subproblem
that give values for Pk, the search direction, satisfying

IP(Pk) = pkgk + 'pTiHkpk < -/ 31IMl + /2lirkll. (3.3)

Proof. In the proof we drop the subscript corresponding to the iteration number. Consider
the following cases:

(i) p is the minimizer of the QP subproblem. Then,

pTg + pTHp pTATA = -cTf < -Tc - <j jII ljc- 1

2b<_ -- pTHp -+ mll-I

where/iim > 0 is a bound on the norm of the QP multipliers. Note that from the
properties of H, pTHp > IioHIIpl2 .

(ii) p is obtained from a stationary point P of QP that is not a minimizer. Let 60 be the
value introduced in the proof of Lemma 3.3. One of the following three cases must
apply:

Assume that I111i > 6' and li - pP0 l -- I6 . From these conditions, 11p11 > 6° .

From I1p1ll __/Jpcallrll, assumptions A1-A2 and Lemma 2.1, it follows that I1p1ll _ K
and

V(po) <_ fl.gK + 31.HK 2 =

We then have 0(p) </ k, implying

1(p + H-g)TH(p + H-g) - gTH-lg k K,

and hence

1i + H-gJlJ2 < 21 1 ,' + Inmg

fl.vH

$ Global convergence results 13

giving the bound

II~II < Amp = / + . 2k#.f + #.Ig

Using this property, we can write

I1pII - /3flr 2In p oI,
IIPII-I~ < nm 6

Defining /' = , nm + 0tvH 3n,pn, we have

P, On______ I, 2/320flnmp)3pcs
+ PTHP - iIIpll < 202 11011 - 0 Ilrll,

giving finally
-!pTH - 2020nmpp ..lr
2 o6

Assume that liI-poll > 60. Let pi denote the ith iterate for the QP subproblem and
S= '(p;). We have

'_,- _ = _oi(gTd + pjT..Hdj) - -,adTHd = dTHd a,(1 - a).

Summing over all the iterations to the stationary point, and letting O(P) we get
Vo- FjdTHdj a(l 1- .) flv Id!Ia(

but from [J3 - poll = 11 Xiaidi11 > 6", for at least one i we must have

a11d11 > 60

where m is a bound on the number of steps; using ai _< 1, it must hold that

00o - i/ fIvH (-)(±()- (3(4)

From

+ i poTHpo :5 3llp°i 5 63pc.O llrll (3.5)
we can derive the following bound:

~k < 1 0ko - -< -llpll + fop,.Ollrll
for 0 < 01 < //!1p2

* If I[i[I - 60, then from (3.1),

o - V) > Opd,
and using (3.5)

!5 -).pd + Opc llrllj: <- -fIlPU2 + O,.O3IIjrII,
where 0 < /3 5 3,pd//3mp. U

14

Definition of the penalty parameter

We now show that the penalty parameter can be selected in such a way that the initial
descent available for the linesearch is sufficiently large. We start by defining a scalar A. It
will be shown in a subsequent lemma that 4k(0, /) satisfies the bound given in step (iii) of
the algorithm.

We first introduce a vector b and a nonnegative scalar /32. Their values should be selected
as follows:

* Define Pk as the QP multipliers if pk is the minimizer of the QP subproblem; otherwise
define Pk as a multiplier estimate satisfying conditions MC1-MC3.

" Define

p if pTg + ,T(c - s) <: -pTHp,
b = i /otherwise.

" Define
2 -max(0, 2),

where
/ 211c - 111 = pTg + Hp + bT(c - S).

Note that 0' is bounded since from Lemma 3.5 we have,

pTg + pTHp + bT(c - s) _ pTg + pTHp + bT(c - s) < (P2 + llbj)Ijc - sj.

The value for /#2 presented above is related to the constant introduced in (3.3), while
the value of b is related to the QP multipliers at the current point. For the purpose of
satisfying the bound given in step (iii) of the algorithm, b can be taken to be zero, but as
it will be seen later, it plays an important role in ensuring that the penalty parameter is
chosen in a way that does not inhibit superlinear convergence.

Define
112A - i-b + vll (3.6)

Ic - S(3.6

where vi = sign(ci - se), giving vT(c - s) = Ilc - s 11.

Lemma 3.6. For all p >_ Pk, where Ak is the value defined in (3.6),

0(0,p) < -- 2pTkHkpk. (3.7)

Proof. Again, we drop the subscript corresponding to the iteration number.
We start by introducing an expression for 0'(0). To derive it, consider first the gradient

of LA with respect to x, A and s,

(g(x) - A(x) TA + pA(x) T(c(x) - s)
VLA(xA,s) -- (c(z) - q) . (3.8)

- p(c(X)- a)

3 Global convergence results 15

It follows that 0'(0) is given by

0'(0) = pg - pTATA + ppTAT(c - s) - (c - s)T + ATq - pqT(c - s)
= pTg + (2,\ - p)T(c - s) - plC - s112, (3.9)

where g, A, and c are evaluated at x.
From (3.9) and (3.6),

0'(0,A) = pTg + (2\ - ,)T(c - s) - Ilc - sI1112A -ju - b + Ivll
:_ p:Tg + bT~c -8) - 0' T(C_- S)

:5 -pTr,

completing the result. I

An immediate consequence of (3.7) and the properties of Hk is the following bound on
the directional derivative:

O(O) _< - IHIIPk112, (3.10)

for OH I.vH.
The strategy for the selection of the penalty parameter Pk is to define its value to satisfy

(3.7), while remaining small enough to be bounded by a multiple of A3. An example of a
selection rule having these properties is as follows.

Let

- Pk-1 if 0'(0,Pk-) < -iPkHkPk, (3.11)max(A-,2p, 1) otherwise,

where Ak is defined as in (3.6). Then, for any iteration ki in which the parameter needs
to be increased, it holds that Pk, > 2pki_. It follows from this result and (3.6) that the
penalty parameter goes to infinity if and only if its value is increased in an infinite number
of iterations.

For the rest of this paper, the symbol Pk will denote a value of the penalty parameter
satisfying /k < Pk < K/3k, for some constant K > 1.

Proof of global convergence

The proof of global convergence is based on the fact that the decrease in the value of the
merit function in each iteration is bounded away from zero by a sufficiently large value,
related to the norm of the search direction. This fact is implied by the existence of certain
bounds on the rate of growth for the penalty parameter, introduced in the following lemma.
The notation ki is used in all that follows to indicate iterations at which the value of the
penalty parameter needs to be modified.

Lemma 3.7. For any iteration k, in which the value of p is modified,

Pki Ilck, - S, 11 < N

16

and Pk, llPk, 112 < N,

for some constant N.

Proof. All quantities in the proof refer to iteration ki, and so this subscript is dropped.
From the boundedness of #2, Lemma 2.1, the definition of b, and condition MCI on the

multipliers, there must exist a constant N1 such that

112A - / - 6 + #vi < N1,

and from the definition of A and the condition that p has to be selected as a finite multiple
of ,

plic- sl < N1.

For the second part, using Lemma 3.5 (we add the term bT(c - s) using the boundedness
of 11bl), we can write after some algebraic manipulation

t(O) =pTg + (2A - A)T(c - s) - plIc - S112
<_ -PTHp - 111p112 + (2A - it - 6 + # 2v)T(c - s) - p(c - s)T(c - s).

Since we have 4'(O,p-) > - pTHp, where p- is the value of p at the previous iteration, it
follows that

011p112 < (2A - IL - 6 + /2v)T(c - s)

_< 112A - p - b + 02VII I1c - sll.

We reorder terms to obtain

11p12 (3.12)
lIc - 11 - 112- - - b + ,32vII

Multiplying both sides by p and using the same arguments as in the first part of the lemma
yields

pjup jl2 < N2,
completing the proof. I

The convergence proof follows along lines similar to those presented in [GMSW86b]. The
following theorem relies on results presented in this reference, that hold with only minor
modifications for the algorithm considered in this paper.

Theorem 3.1. The algorithm has the property that

lim IIXk - x*I = 0.
k-.oo

3 Global convergence results 17

Proof. It follows from Lemma 3.4 that it is sufficient for the proof of the theorem to show
lim IIPkII = 0. (3.13)

k-oo

If IIPkII = 0 for any k, the algorithm terminates and the theorem is true. Hence we assume
that IIPkII $ 0 for any k.

Consider first the case when there is no upper bound on the penalty parameter. The
following result, given as Lemma 4.6 in [GMSW86b], and as Lemma 3.6.3 in [Pr89], holds
for the algorithm:

k1+l-1

Pkl IlakPkll1 < M, (3.14)
k=kl

where M is a positive constant. It also holds that there exists a uniform lower bound on
ak, 0 < d < ak, (Lemma 4.9 in [GMSW86b], and Lemma 3.6.6 in [Pr89]). From these
properties, (3.14) implies that for any 6 > 0 we can find an iteration index K such that

IPkII - 6 for k > K,

which implies that IIPk1I -- 0 as required.
In the bounded case, we know that there exists a value 0 and an iteration index K, such

that p = f for all k > . We consider henceforth only such values of k.
The proof is by contradiction. We assume that there exists c > 0 and an infinite

subsequence {ki} such that Ipk,Il > c for all i. Consider only indices i such that ki > k.
Every iteration after k must yield a strict decrease in the merit function because the
boundedness of the steplength implies

0(a) - q0(0) <_ aa4(0) < -. rc,63,lpil < 0.

The adjustment of the slack variables s in step (ii) of the algorithm can only lead to a further
reduction in the merit function, as L is quadratic in s and the minimizer with respect to
si is given by ci - Ai/p. From the fact that the penalty parameter is not modified, for
iterations from the subsequence we have

O(X,+,) - O(xk) < O(Xk,+1) - 4(Xk) < -2c,/3HE .

Therefore, since the merit function with p = ji decreases by at least a fixed quantity at
every step in the subsequence, it must be unbounded below. But this is impossible, from
assumptions Al, A2 and Lemma 2.1, so (3.13) must hold. I

Once the global convergence of the algorithm has been established, the next step is
to show that the multiplier estimate Ak also converges to the desired value. The result
presented below, given as Theorem 4.2 in [GMSW86b], implies that the convergence of the
multiplier estimates is a consequence of the global convergence of the algorithm, and the
facts that the multiplier estimates are bounded in norm, and the steplength is bounded
away from zero.

Corollary 3.1. Let A* denote the multiplier vector at z*. Then

lim Il\k - A*Il = 0.
k-oo

18

4. Rate of convergence

Under additional assumptions we shall show that the algorithm converges at a superlinear
rate. In order to do this we first prove a number of results on the rate of growth of the
penalty parameter p.

Lemma 4.1. If there exists an infinite subsequence of iterations {kl} at which the penalty
parameter is increased, then

lim Pkj tick. - sk11 I= 0

and
lir pk, llPk, II = 0.
L---oo

Proof. We drop the subscript ki in what follows. From definition (3.6) and boundedness
of the ratio p/,

pjjc - s11 -< 2112A -,a - b + O3vll,

and from the definition of b after Lemma 3.6,

bk,

As the QP multipliers satisfy pTg + pTHp = _cT, and for p large enough p is obtained as
the solution of the QP subproblem, b eventually satisfies

T9p + 6T(c _ s) < -PTHP,

implying that we can take/3 = 0 in (3.6).
We can now use Corollary 3.1 to conclude that

lim 112Ak1 - Pk. - bk, + /32kL,, = 01-*¢o

and
lim Pk lCk, - sk, II = 0. (4.1)

i-*¢o

Finally, from (3.12) and (4.1) we have
liM pk lIPkll1 = 0,

completing the proof. I

Lemma 4.2. If there exists an infinite subsequence {k1}, then

HM.Pk (Okj..k) - -k,+ 2C (Pk,)) = 0.

4 Rate of convergence 19

Proof. To simplify the notation we shall use the subscripts 0 and K to denote quantities
associated with the iterations k and k1+ 1 respectively. Thus, the penalty parameter is
increased at x0 and XK and remains fixed at Po for iterations 1,..., K - 1.

From the boundedness of 11Ail (Lemma 2.1), and the fact that P0 < PK, we have

polAo(co - so)l S 211Aoll pollco - soil -+ 0,
polAK(cK - S,)l _ 211\K11 PKIICK - SKII -+ 0,

and from Lemma 4.1 we have

Po(4o - OK) - po(Fo - FK) -- 0. (4.2)

Using
poco #o < poKlIpoll 2 + po(co - so)T(2A - yo). (4.3)

we have
poKlIpoll' + po(co - so)T(2Ao - fio) > po4fio _> po(co - so)Tfio. (4.4)

Using again Lemma 4.1, from (4.4) and assumption A3, implying the boundedness of Il'o1,
we get

PocioA -* 0. (4.5)

From (2.6) (keeping the same notation),

POCKo _ poc o :_ pollIoh eIC- - SKII 0- (4.6)

We can again use Lemma 4.1 to obtain

poO (max(lIpO112, IIpK I2)) o. (4.7)

From (4.2), (4.5), (4.6) and (4.7) we obtain

Po(¢o - O K) -- 0,

giving the desired result. j

Lemma 4.3. For general iterations k,

lim pkllPpk1 2 = 0.
k-oo

Proof. We use the same notation as lemma 4.2.
If p is bounded, the result follows from Theorem 3.1. If p is increased in an infinite

subsequence of iterations, then for 0 < k < K - 1, property (2.5a) imposed by the choice
of ak, and the fact that the penalty parameter is not increased, imply that

Ok - 0k+ 1 >- -"k¢f'k (4.8)

20

We can then write
K-I

2o,, akllpkll < 00- OK-

k=O

Rearranging this expression and using the property that 0 < d < ak, we obtain

K-i

20', IIPkII < 00 - OK, (4.9)
k=O

and the result follows from Lemma 4.2. I

Lemma 4.4. For yeneral iterations k,

BM PkIICk - SkII = 0.
k-oo

Proof. If p is bounded the result follows from c > 0, A* > 0, A*Tc* = 0, Corollary ??,
Lemma 3.1 and Ai

ci - si = min(ci, p).
P

If p is increased in an infinite subsequence of iterations, consider two cases:
(i) If i is such that ci > 0, then Ai = 0 and as

plci - sil = I min(pci, Ai)j,

from the convergence of the multiplier estimates, eventually plci - sil = jAj - 0.

(ii) For those i such that c4i = 0, implying Ai > 0, consider iteration indices large caough
so that the correct active set is identified, implying aTp + ci = 0. Then, from the
Taylor series expansion for c and the boundedness of the steplength,

ei = c4 + aoaTp + O(1oopoll 2) = (1 - ao)c, + O(llpo1 2).

Recurring this relationship for the kth step between k = 0 and k = K we get
k-1 k-1

Pk(Ck)i = po(ck)i = PO 11(1- j)(co)i + poO(Z IpiII2),
j=o j=0

but as 0 < aj < 1 we obtain
k-1

pkl(Ck),il < POI(CO)il + pO(I, 0pj2). (4.10)
j=o

From Lemma 4.1 we must have that pol(co)i[--+ 0, and using (4.10) and Lemma 4.3,

Pkl(Ck)il - 0.

4 Rate of convergence 21

This completes the proof. I

Lemma 4.5. For large enough k,
T
kSk = 0.

Proof. Assume k large enough so that the correct active set has been identified.

(i) If i is such that c* > 0, from condition MC3 on the multipliers, Ak, = 0.

(ii) If i is such that c* = 0, then, from strict complementarity, At > 0. Also, from
Lemma 4.4, pk((Ck)i - (Sk)i) = min(pk(Ck)i,(Ak)i) -0 0, so for large enough k,
Lemma 3.1 will imply pk(Ck)i < (Ak)i, and

(8k), = max (,(Ck)i 0,
Pk

proving the result. I

To prove that the algorithm converges superlinearly it is necessary to assume that Hk
converges to an approximation of V xL(z*, A*) in some sense. We shall also introduce a
stronger condition on the Lagrange multiplier estimate.

Define Wk as Wk = V 2_L(xk, Ak). We impose the following condition on Hk:

AT. Following Boggs, Tolle and Wang [BTW82], we assume

IIZT(Hk - Wk)Pkll = o(IlPkII),

where Zk is a basis for the null space of Ak that is bounded in norm and has its
smallest singular value bounded away from 0.

The proof proceeds by first showing that the sequence {xk + Pk - X*} converges su-
perlinearly, and then proving that a steplength of one is eventually attained. The results
presented on bounds for the growth rate of the penalty parameter allow us to obtain an
asymptotic expansion for the quantities involved in the linesearch termination criterion.

We want to prove that condition (2.4) is satisfied for all k large enough. We show in the
following lemma that the satisfaction of (2.4) is directly related to the asymptotic properties
of Tk p(gk - A~kpk) + pTWkpk. In what follows, the absence of an argument indicates
values at Xk, and an argument of 1 will indicate values at zk + Pk.

Lemma 4.6. The following relationship holds:

Ok(1) - Ok= Lk+' + 2Tk + o(IlpkI12).

22

Proof. From (2.1) we have

- = F(1) - F - ,IT(c(l) - s - q) + AT(c - s)
+ P2(e(1)- s - q)T(c(i) - s- q) - 12(c -s)r(c - s).

2 2

Using the corresponding Taylor expansions around xk,

c1(1) - si - qj= -- pTV2Cp + o(11pjj 2),

we obtain

g(l) - = grp+ !pTV 2Fp ,-JAi pTV2cp 1 PTV 2Cp

+ AT(c - s) + eZE(pTV2cp)2 - (c - s)T(c - S) + o(11p112). (4.11)
8' 2

From Lemma 4.3 and (4.11),

0(1) - = ' + I (pTWp + 2 T(c - s) + p(c - S)T(c - s)) + o(I1PI12)

= 3 +2 (pTWp+ pTg + AT(cs)) +o(lP1 2)

- + (pTWp + pT(g - ATs)) + o(1lpll2),

completing the result. I

The assumptions made imply the superlinear convergence of the sequence {xk +Pk -X* }.
The following lemma corresponds to Theorem 3.1 in [BTW82].

Lemma 4.7. Under assumptions A1-AT, and conditions MC1-MC3,

Ixk + Pk - x*I1 = o(Ilxk - X*1). (4.12)

The main result of this section is given in the next theorem, where it is shown that, if
condition MC2 is replaccd by a stronger condition, then after a finite number of iterations a
steplength of one is taken for all iterations thereafter, implying that the algorithm achieves
superlinear convergence.

The new condition is

MC2'. 111k - A*i = o(Ilxk - z*1).

It is possible to prove Theorem 4.1 without the need to strengthen the conditions on
the multipliers. It is shown in [Pr89] that there exists a constant M such that if Pk > M,
condition MC2 is sufficient.

Theorem 4.1. Under assumptions Al-AT, and conditions MCI, MC2' and MC3, the
algorithm converges superlinearly.

4 Rate of convergence 23

Proof. As in PoweU and Yuan [PY86], observe that the continuity of second derivatives
gives the following relationships:

F~~~~x~ +)=Fx (g(X) + g(X + p)) Tp + o(11p112)

c(x + p) = c(x) + 1(A(x) + A(x + p))p+ o(llpll).

From the Taylor series expansions we have

F(x + p) = F(x) + g(x)Tp + pTV 2F(x)p + o(11p112)
ci(x + p) = ci(x) + ai(x)Tp + pTV 2ci(x)p + o(11p112),

and since (4.12) implies g(x + p) = g* + o(IlpII), a,(x + p) -- a + o(Ilpll), we get

pTV2 Fp = (9* - g)Tp + o(jjpjj2)
pTV 2cp = (- a)Tp o(11pj12).

Given that IL A pTV2ciP = ', pTV 2Cp + o(jpjj12), we must have

pTWp = pT(g* _ A*T.) - pT(g - ATP) + o(jjpjj 2). (4.13)

Condition MC2' implies pT(9 * - A*TP) = o(lIpJI2), and from (4.13),

pTWp + pT(g - ATM) = o(11p112). (4.14)

From Lemma 4.6 and (4.14),

O(j) - 0(0) - L'(0) + o(11pI12),

but from (3.10) condition (2.4) is eventually satisfied, and we have xk+l = Xk + Pk for all k

large enough. In this case, from (4.12),

lim I1Xk+1 - X* 1- 0,
k-oo jIxk - x* 11

i.e. superlinear convergence, completing the proof. I

Boundedness of the penalty parameter

The last result in this section shows that, if condition MC2' is replaced by a slightly
stronger condition, the penalty parameter needs to r! modified in at most a finite number of

iterations (and consequently it remains bounded). The criterion presented will be satisfied,

for example, by the least-squares multipliers computed at xk + Pk.

Theorem 4.2. If the multiplier estimates Ilk in the algorithm satisfy

11/1 - A*l1 = O(jjxk + Pk - X*I1), (4.15)

the penalty parameter is only increased a finite number of times, and there exists a constant

M such that pk < M for all k.

24

Proof. Let K be an iteration index such that, for all iterations k > K, Pk is determined
as the minimizer of QP and ak = 1. We now consider iterations having k > K.

T T = -C

9kpk + pklkpk = pkAkrk= -Irk < -(Ck - S)T, (4.16)

where irk are the QP multipliers at iteration k. From (3.9), (4.16) and the fact that a unit
steplength is accepted, it follows that

O'k(O) = 9Tpk + (21\k - /Ik)T (Ck - Sk) - PkjCk - SkIl'

<- PHkPk + 1121k-1 - Pk - irkIIIlck - SkIl - PkIlCk - sO'.

If (4.15) holds, from the properties of Hk and lirk -)4 = O(jPkjI) we must have

114k-I - uk - 7rkll _ MpkjHkpk

for some positive constant M.
We can then write

112/k-1 - Lk -rk-lllck - SkIl < PkHkPk + MIlck - SO'k,

implying that
(0) < -'pTkHkpk + ('M - Pk)ljCk - skIl2

From this inequality it follows that if pk > IM, condition (3.7) will be satisfied, and the
penalty parameter will not need to be increased. Given that we are using the rule for
updating Pk described after Lemma 3.6, it must hold that Pk < !KM. I

Note that the lemma does not require any conditions on how well Hk approximates Wk.

5. Other Merit Functions

Several merit functions have been proposed and analyzed in the literature (a review can
be found in Powell (Po87]). The question arises if the convergence results using early
termination in the solution of the QP subproblem depend on our specific merit function, or
if they are fairly independent of this choice. Wp shall show in this section the choice of merit
function is not critical. What we present is how to adapt our SQP algorithm to the use of
other merit functions rather than examine other methods explicitly to see if the particular
QP subproblem posed and the manner the search is performed can be adapted to the use of
an incomplete solution. For example, we still perform a search in the x and A spaces. Slack
variables do not appear in the merit functions we shall consider, consequently the search
in the space of the slack variables is no longer required. Because the freedom to choose the
multiplier estimates is relaxed, our algorithm can be made to mimic other algorithms. For
example, we are free to choose all the multiplier estimates to be zero making the search in
the multiplier space specious.

We have selected as examples the study of two particular merit function. The first one
corresponds to a class of merit functions that includes among others the 4j merit function

5 Other Merit Functions 25

analyzed in Han (Han76], Byrd and Nocedal [BN881 and Burke and Han [BH89]. This
general merit function takes the form:

O(x, A) = F(x) + ATC-(x) + pIjc-(x), (5.1)

where an lp norm (1 < p < co) is used, and c(x) = max(0,-ci(x)). The second merit
function we consider is

O(x, A) = F(x) + ATc-(x) + pIlc-(z)Ij. (5.2)

This merit function has been studied among others by Powell and Yuan [PY86]. Unlike the
algorithm defined in [PY86], we do not explicitly define the form of the multiplier estimates
although the one used in (PY86] satisfies the criteria on our estimates.

We still assume A1-A6 hold for the problem. However, the multiplier estimate used,
Pk, is only required to satisfy MCI when the merit function (5.1) is used. This condition
is trivial to satisfy. For example, we may choose \0 = 0 and k = 0. Such a choice reduces
(5.1) to the well-known 11 merit function and our algorithm becomes very similar to that
analysed in [Han76]. When (5.2) is used, we assume conditions MC1 and MC3 hold.
Again it is relatively trivial to satisfy these conditions. We have also assumed in the proofs
that A0 > 0 and Pk > 3.

The criteria given in section 2 for the choice of steplength ak assumes the merit function
has continuous first derivatives. This property does not necessarily hold for the merit
functions under consideration. Therefore we use the following criteria for determining a
value ak. The steplength Qak is required to satisfy

q(ak) =_4 (zk + akPk,4+ Ckk) < 0(0) + ?7akAk, (5.3)

where Ak E gkPk + (G - Ak)Tc-(Xk) - Pkllc-(xk)ll, and in addition must either satisfy

Ok _ > 0 (5.4)

or
ak > 7udk and O(dk) > 0b(0) + takAk, (5.5)

where0 < vi < -yu < 1,0 < ij_ o< 1 and 6k > 0. For a discussion of this criteria and
the existence of ak see Calamai and Mor6 [CM87]. Our preference for the criteria given in
section 2 is based on our belief that in practice they lead to a better choice of -k. In the
definition of our algorithm we could have used other steplength criteria without impacting
the convergence properties.

The following basic relationships will be used to establish the convergence results,

c- (x + ap) < Ic,(x + ap) - c,(x) - aaTpl + (c,(x) + aa p (5.6a)

(ci(x) + aaip) < (1 - c(x) (5.6b)
-WrAp <5 -11ci (x)ll, (5.6c)

where wTAp represents an element of dOV(0), the subdifferential of p(a) - Ic-(x + ap)(at
0. The elements of w take values in (0, I] and are 0 whenever ci(x) > 0. To simplify the

26

notation in what follows, we introduce a diagonal matrix fQ formed from the elements of W
as Q = diag(wi).

Consider now the case when 0 has been defined from (5.1). From our assumption that
Ak > 0,

A4Tfk(Akpk + Ck) _ 0

for all k. It follows from this inequality and the relationships given in (5.6) that

O)k(O) = gTpk + Tc-(xk) - ATkkAkPk - pk4TAkpk < Ak.

We select Pk such that
Ak :_ -'pkHkpk. (5.7)

This rule is analogous to the ones used in Byrd and Nocedal [BN88], and Burke and Han
[BH89].

The first step is to establish that such a value of p exists. From Lemma 3.5 we have
Ak _/3111Pk 12 + /2lC k11 2 k- 11 11,

and defining p,, 02 + 3f$,rnu, for any value p >_ p. condition (5.7) is satisfied for any k.
This result also shows that the value of p will remain bounded in the algorithm.

Theorem 5.1. The algorithm modified to use the merit functions (5.1) converges globally.

Proof. Given the results from Section 3, it is enough to show that jpklj - 0.
As p cannot grow without bound, any strategy for increasing p by a finite quantity when

required to do so must imply that there exists an iteration value K such that Pk = PK for
all k > K. We consider only iterations of this form. For k > K,

0(ak) - 4(akj) < akO'Ak < -o/#..HakjjpklI2.

From the boundedness of 4), it follows that akllPkl12 _ 0.

If IIPkjl -* 0, convergence follows from Lemma 3.1. Otherwise, if for a subsequence
I PkjI > c, we must have ak --+ 0 along the subsequence, and from the termination conditions
for the linesearch, 6k --+ 0.

From the definition of the merit function (5.1), (we drop the index k in the following
relationships)

0(d) - (0) = &9Tp + AT(c-(d) - C()) + d1TC() - pClC-(O)l

+ (F(dt) - F(o) - 6grp) + p(llc-(d)ll - (1 - 6)Ijc-(0)jj).

For the last term, from (5.6a) and (5.6b), it follows that

lic-(6)I - (1 - 6)11c-(0)I _< 1ic(6) - c(o) - &ApI,

5 Other Merit Functions 27

and from this result we must have

ow - 0(0) ogTp + AT(c-(oa) - c-(0)) + OTc-(6) - dpllc-(0)MI
+ (F(a) - F(0) - dgTp) + pllc(a) - c(0) - ApIl.

If we use again (5.6a) and (5.6b) on the terms associated with the multiplier estimates
(given that by assumption A + 6& > 0), we obtain

0(d) - 4(0) < digTp + Ei(Aj + -i)Tc(d) - ci(0) - jaTpl + (1 - 6)ATC(0)
- ATc-(O) + 6(1 - 6) Te-(O) - 6p(jC-(0)II + O(IeipII 2).

Simplifying this expression gives

0(d) - 0(0) < a (gTp + (- A)Tc-(0) - PI1c-(0)II) + 6211c-(0)11 1111 + o(116p1 2). (5.8)

Replacing this bound in the linesearch termination condition implies

0 < (1 - u)6A + d2 j1c-(0)jI g1I + O(jjdp112). (5.9)

If in this equation we use the bound A < -/3,,HIIPjI 2 and we take into account that IpIl is
bounded away from zero, by taking limits along the subsequence we obtain

0 < -(1 - a)I0n90H 2,

but this is not possible, so we must have lpAj --+ 0 for the whole sequence. I

We now consider the second merit function (5.2). The subgradient along the search
direction at (xk,Ak) is given by

O'k(o) = gTpt + rc-(Xk) AT3kAkpk _ PkC-(xk)TAkPk !5 Ak,

where we have defined

Ak =- gkpTk + (k - Ak)Tc-(xk) - pkIIC-(Xk)11 2,

and we have made use of Ak > 0 to have

(fWkAk + Pkc)T(Akpk + cI) 0.

In this case it is not immediately evident that Pk remains bounded. The convergence
proof we give is similar to the one introduced in Section 3. The definition of p given in that
section will be preserved, replacing only c - s by c-.

Theorem 5.2. The algorithm modified to use the merit function (5.2) converges globally.

28

Proof. Again, from the results in Section 3 it is enough to show that IIPIt -- 0, although
now we need to consider two cases.

If Pk remains bounded, then as in the proof of Theorem 5.1, we must have that cakkIpklI 2

0.
If iiPkII -- 0, convergence follows from Lemma 3.1. Otherwise, if for a subsequence

I PkII > c, we must have ak - 0, and from the termination conditions for the linesearch,
d; --+ 0.

The argument when p is bounded is similar to that given in Theorem 5.1. From (5.6a)
and (5.6b), we also have (we drop the index k in the following relationships)

.0(&) - (0) &tgTp + \T(c-(&) - C-(0)) + 65Tc-(&) - p(& - d2)jjc-(0)lj2

+ plIc(d) - c(0) - .Aplj(jjc(d) - c(O) - &Apl + 11(c(0) + dAp)- ii)

+ (F(d) - F(0) - 6gTp),

and again usiag (5.6a) and (5.6b) on the terms associated to the multiplier estimates, we
obtain

0(d) - 0(0) < d(i + (A)Tc-(0) _ plIC-(0)112)

+ i21Ic-(O)11 (itll + p2lc-(0)l) + O(lldpI 2). (5.10)

Replacing this bound in the linesearch termination condition implies

< (1 - ,)dA + 6211c-(0)ll (1111 + pjjc-(0)jj) + O(IjpI12).

If in this equation we use the bound A < -#.aHI1pt 2 and we take into account that IIPI
is bounded away from zero and p is bounded, by taking limits along the subsequence we
obtain

0 < -(1 - a)31.HC2 ,

but this is not possible, so we must have jjpkj[- 0 for the whole sequence.
The other possible situation corresponds to pk growing without bound. In this case we

have that for all iterations where the value of the penalty parameter is increased
pk 1 i _ K, and PkIIPkI 2 < K(2.

The proof of this result is basically that of Lemma 3.7. From these bounds it is possible to
show that we must also have

PkIIPkII2 < K

for all k (the proof is similar to the one for Lemma 4.6 in [GMSW86b], or the one for
Lemma 3.6.3 in [Pr89]), implying pk -- 0 and the convergence of the algorithm. I

Near the solution we have shown a minimizer of the QP subproblem is determined.
Consequently, the issue of superlinear convergence is not relevant to whether or not an
incomplete SQP method is used (once convergence has been established). In some cases the

6 Numerical Results 29

algorithms described in this section (for specific choices of multiplier estimates) are simi-
lar to known algorithms for which superlinear convergence is not always attained without
some modifications. For example, it has been demonstrated that the algorithm described
in [Han76] may not take a unit step even when the sequence {Xk + Pk} is superlinearly
convergent (as our algorithm does when using our original merit function).

6. Numerical Results

In this section we present numerical results obtained from an implementation of our algo-
rithm. We are unaware of any general purpose large-scale SQP routine on which we can
test our modifications. As a first step we have modified the code NPSOL, which is an
implementation of the algorithm NPSQP. We have called the modified routine INPSOL.
Apart from the definition of the search direction all other aspects of INPSOL are identical
to those of NPSOL. A detailed description of NPSOL is given in Gill et a]. [GMSW86a]. It
should be noted that NPSOL does not incorporate linear constraints into the merit func-
tion. An initial point is obtained that is feasible with respect to the linear constraints and
thereafter feasibility is retained (by incorporating the linear constraints in the QP subprob-
lem). On many practical problems the feasible region with respect to the linear constraints
is compact. On such problems this approach ensures assumption Al is satisfied.

The purpose of the testing reported is to demonstrate that the efficiency and robustness
of the modified algorithm are comparable to those of NPSOL. Naturally, we can only test the
hypothesis on the domain of problems NPSOL is designed to solve, namely problems having
a small number of variables and constraints, although on these problems the opportunities
for improvement are limited, as we discuss later. What this implementation really tests is
whether the introduction of flexibility in the determination of the search direction has a
significant cost.

The search direction

The algorithm described in Section 2 allows for considerable flexibility of design. We de-
scribe here the specific choices made in our implementation. The search direction Pk is
computed according to the following steps. (The subscript k corresponding to the iteration
number is dropped from now on.)

" An initial feasible point p0 is obtained following the same procedure as NPSOL. No
special attempt was made to satisfy condition (2.7) since on the problems tested it
was always satisfied by the feasibility phase in NPSOL.

" The active-set method used in NPSOL was terminated at P, the first stationary point.
At P the corresponding QP multipliers are computed. Define as

Ai - illaill.

" Let cm denote machine precision. If

V i (6.1)

30

then P is taken as the search direction.

" If (6.1) does not hold, we can take a step away from a subset of the active constraints
while decreasing the value of the QP objective function. To identify the set of active
constraints to be deleted, define

pmi = mini/ji,

and introduce a vector el as

Ilaill if Ai < 10-/Amin,
S{ a- l 0 otherwise. (6.2)

" There is also a limit of 50 on the maximum number of constraints to be deleted. If
(6.2) is satisfied by more than 50 active constraints, only the ones having the smallest
multipliers are deleted. For most problems this limit has no effect, since the total
number of constraints is less than 50.

" The direction away from the selected constraints is obtained as the least-norm solution
of the system

Ad - er;

that is, we define
dy = (AY)-'el, dz = 0,

to obtain
d = Ydy.

* If a, denotes the step to the nearest inactive constraint, and a,, is defined as in (2.9),

(g + HP3)Td
Gm = drfHd

we define a as in (2.9):
a = min(ac, am, aM),

where am is 1010 for this case.

" We obtain the search direction p from (2.10), as

= I + ad if 11011 < #.'pllp + adil,{ otherwise,

where 0,p = 100; with this value the step ad is accepted in nearly all cases.

" Finally, the multiplier estimate used to define the linesearch is taken to be i if p -3.
Otherwise, it is taken to be the least-squares estimate ,\L obtained from

AATAL = Ag.

6 Numerical Results 31

Test problems

The two algorithms, NPSOL and INPSOL, have been compared by solving a collection of
114 problems from the literature.

The problems have been obtained from the following sources:

" Problem I is the example problem distributed with NPSOL; its description can be
found in [GMSW86a]. Problems 3 and 4 are slight reformulations of the same problem,
where the bounds -1 < X 3 _< 1 have been replaced by the constraint 3 < 1. Problem
3 uses the starting point

1 2 1 1 ,,-31 3, 3 3, 3, 3, 3, 3

" Descriptions for problems 6 and 12-15 can be found in [MS82]. The version of problem
6 considered is the one corresponding to a value T = 10. Problems 12 and 13 start
from point (d) for Wright No. 4 as indicated in the reference, while problems 14 and
15 start from points (a) and (b) for Wright No. 9, respectively.

" A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can be found
in Fraley [Fra88].

" Problems 21-30 were obtained from Boggs and Tolle [BT84].

• All problems having names starting with "11S" are from Hock and Schittkowski [HS81].

* Problems 85-95 can be found in Dembo [Dem76].

All the above problems have been used in the past to test NPSOL. It should be noted
that the problems in this group are small; the average number of variables is 10, and the
average number of constraints is 6. Nevertheless, many of these problems are considered
hard to solve. Moreover, for some of these problems the assumptions made to establish the
convergence results fail to hold; for example, in some cases the Jacobian at the solution is
singular, or no feasible points exist for some QP subproblems.

The algorithms have also been tested on another group of problems.

* The structural optimization problems 99-114 are described in Ringertz [Rin88]. The
letters "I" and "E" in the problem name indicate if the formulation used included
explicitly the displacement variables ("E") or eliminated them in advance. Also, the
following number (10, 25, 36 or 63) denotes the number of bars in the truss considered.
Finally, whenever a number is included at the end of the name (006, 040 or 060), the
initial point taken has been modified to be xi = 6, 40 or 60 respectively.

These problems have been introduced due to the atypical behavior of quasi-Newton SQP
algorithms on them. For this group, the ratio of QP to nonlinear iterations is large when
compared to the size of the problem; on the first test set (problems 1-98) the average ratio
for NPSOL is 2 QP iterations per nonlinear iteration, while on problems 99-114 the average
ratio is 30.

32

The normal behavior of NPSOL on the first set of test problems is to require a relatively
large number of QP iterations in the first few nonlinear iterations. Typically, the number
of QP iterations declines exponentially until near the solution, when only one iteration is
required. The STRUC problems depart from this "standard" behavior, in the sense that the
number of QP iterations declines much more gradually. (Although only one QP iteration
is required in the end, most nonlinear iterations require more.) This offers the possibility
of observing the reductions that can be achieved by using the early-termination criterion,
with limited distortion from the asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented above;
the average number of variables is now 55, and the average number of constraints is 100.
For all the reasons mentioned, this set of problems provides a better environment in which
to test the ability of the proposed early-termination criterion to reduce the number of QP
iterations.

Computing environment

Version 4.02 of NPSOL was used in these comparisons. For this test set, all parameters
used in the code have been fixed at their default values (see [GMSW86a]). No attempt was
made to improve the results by selecting a different set of parameters. It would be difficult
to compare the relative effort to adjust input parameters for the two algorithms. The runs
were performed as batch jobs on a DEC VAXstation II with 5 Mb main memory. The
operating system was VAX/VMS version 4.5, and the compiler used was VAX FORTRAN
version 4.6 with default options.

Results

The results obtained from running both algorithms on the test set are presented in Table 2.
The parameters chosen to characterize the relative performance of both algorithms have

been: the number of outer (nonlinear) iterations for each problem; the number of calls to
the routine computing the va10ies of the objective function, the constraint functions and
their derivatives (function evaluations); the total number of inner (QP) iterations for the
problem (this includes the number of iterations necessary to compute a feasible point); and
the running (CPU) time needed to solve the problem. The results corresponding to both
algorithms are given as a single entry in the tables, with the figures separated by a
symbol, in the form

NPSOL result/INPSOL result.

Given that many of the problems are not convex, the algorithms may converge to dif-
feren solutions. A few such events are indicated in Table 2. Another possible outcome is
failur-that is, the algorithm terminates without finding a solution, because the iteration
limit has been exceeded, because no significant progress can be made at the current point
with respect to the merit function, or because the objective or constraint functions need
to be evaluated at a point for which they are not defined in the code. Such failures are
indicated by "_-"

6 Numerical Results 33

For the set of 114 problems, NPSOL was able to find a solution in 107 cases, while
INPSOL was able to solve 105 problems. We should emphasize that only the default value
of the input parameters were used. Undoubtedly adjustment of the input parameters on the
problems that failed would have led to more successes. The figures illustrate the reliability
of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in Table 2.
The average values have been computed as the geometric means for the ratios of the values
for NPSOL and for INPSOL; that is, averages larger than one indicate that the correspond-
ing value for NPSOL is larger than the value for INPSOL. Also, the averages exclude those
problems where one of the algorithms failed. Separate entries have been provided for prob-
lems 1-98 (the smaller problems), and for problems 99-114 (the structural optimization
problems).

TABLE 1
Average Behavior: NPSOL vs. INPSOL

Problems
All 1-98 99-114

Nonlinear iterations .988 .979 1.044

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

We now comment briefly on the implications of these results.

* The early-termination rule seems to behave very well regarding the numbers of non-
linear iterations and function evaluations; even if we are now using a search direction
of "worse quality" than in NPSOL, the numbers are very close for both algorithms.

e The number of QP iterations is reduced by 20% for the complete set. When judging
this figure we must take into account that the problems are small, implying that
the number of QP iterations required per nonlinear iteration is also small. (In fact,
the average value for the test set is 5.6 QP iterations per nonlinear iteration.) The
opportunity for improvement is correspondingly limited. Moreover, both codes use the
active set at the solution of the previous QP subproblem as a prediction for the correct
active set in the current subproblem, resulting in a small number of QP iterations close
to the solution. As a result, significant savings achieved by incomplete solution of QP
subproblems in the early iterations are masked by a large number of subproblems
requiring only a few QP iterations. As an example, for problem 98 the largest number

34

of QP iterations needed in any nonlinear iteration is reduced from 57 for NPSOL to
15 for INPSOL. This effect is much less clear when we look at total numbers of QP
iterations (244 for NPSOL vs. 170 for INPSOL). Recall that it is necessary in any
implementation to limit the number of iterations taken to solve the subproblem. This
large reduction in the maximum number of iterations is encouraging. Moreover, it
indicates that INPSOL and NPSOL took quite different paths to obtain a solution
on many of the problems. In the light of this fact the similarity of performance is
quite remarkable. Finally, the early-termination rule still requires a feasible point,
and the feasibility phase is the same as in NPSOL. When this phase accounts for
most of the total number of iterations, as with the STRUC problems, the possibility
of improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement obtained
is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when w- look
only at the larger problems, the relative performance of INPSOL improves markedly.
This offers the promise that for even larger problems the results obtained may be
substantially better than the values shown above.

9 The CPU time required by INPSOL is lower than the time for NPSOL, but by a
factor that is much smaller than for the number of QP iterations. This is due not
only to the fact that function evaluations can be expensive when compared to the
effort to solve each QP subproblem, but also to some details in the implementation
that have been chosen to affect the number of QP iterations, even at the expense
of running time. For example, the multiplier estimate used for the linesearch (the
least-squares multiplier) is expensive to compute when many constraints are deleted
in the last step, as the factorization for the Jacobian of the active constraints must
be updated. There are still options to be explored that might reduce the CPU time
for the modified algorithm.

6 Numerical Results 35

TABLE 2
Numerical Results

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (s)

I NPSOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 SINGULAR 15/15 16/16 4/4 1.03/1.05
3 HEXAGON 15/16 21/23 32/29 4.41/4.41
4 HEXAGON (ALT. START) 11/11 16/14 35/26 3.56/3.26
5 LC7 7/9 9/11 13/16 .76/.95
6 ALAN MANNE'S PROBLEM 17/17 18/18 40/37 21.13/21.92
7 ROSEN-SUZUKI 8/8 11/11 9/9 .81/.81
8 QP PROBLEM 8/10 9/11 23/15 1. 10/1,04
9 EXP6 33/53 35/57 38/57 1.96/3.08

10 STEINKE2 -*/5 -/6 -/14 -/.87
11 NORWAY 4/61 5/7 34/13 1.23/.65
12 MHW4 10/10 18/15 14/12 1.31/1.25
13 MHW9 30/19t 56/28 42/24 3.71/2.31
14 MHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 MHW9 INEQUALITY 2 41/14 t 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17
17 SQUARE ROOT 1 /-----

18 SQUARE ROOT 2 23/23 36/36 0/0 5.01/5.32
19 SQUARE ROOT 3 6/6 9/9 7/7 .95/.94
20 SQUARE ROOT 4 -- *---1--I
21 BTI 11/11 19/19 11/11 .81/.83
22 BT2 9/9 14/14 9/9 .71/.70
23 BT3 2/2 5/5 2/2 .19/.19
24 BT4 12/12 18/18 13/13 .92/.92
25 BTS-HS63 6/6 9/9 8/8 .58/.58
26 BT6-HS77 15/15 21/21 16/16 1.52/1.54
27 BT7 31/31 56/56 32/32 3.36/3.43
28 BT8 17/17 19/19 17/17 1.25/1.44
29 BT9-HS39 13/13 16/16 14/14 .95/1.19
30 BT10 8/8 11/11 0/0 .48/.52
31 BT11-HS79 9/9 12/12 10/10 1.05/1.06
32 BT12 27/27 57/57 28/28 3.04/3.04
33 BT13 32/32 44/44 34/34 2.61/2.62
34 POWELL TRIANGLES 23/15 37/16 36/23 3.27/2.28
35 POWELL BADLY SCALED 12/12 15/15 13/13 .85/.85
36 POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARATOS 6/6 7/7 6/6 .44/.44
38 HS72 7/7 8/8 8/8 .69/.67
39 HS73 (CATTLE FEED) 4/4 5/5 4/4 .38/.36
40 HS107 11/11 18/18 27/18 2.77(2.56
41 MUKAI-POLAK 10/10 16/16 13/13 1.08,/1.11
42 INFEASIBLE SUBPROBLEM -/-

43 HS26 47/47 64/64 48/48 3.39/3.41
44 HS32 2/4 3/5 3/5 .25/.38
45 HS46 55/55 58/58 56/56 5.26/4.98
46 HS51 2/2 5/5 2/2 .18/.14
47 HS52 2/2 5/5 2/2 .19/.16
48 HS53 2/2 5/5 2/2 .19/.16
49 PENALTY/ A 16/16 18/19 77/41 20.01/16.49
50 PENALTYI B 6/7 14/19 67/32 14.77/11.77
51 PENALTYI C 29/15 85/40 152/65 24.35/11.65
52 HS13 22/19 23/20 13/10 1.29/1.22
53 HS64 29/43 39/62 47/60 2.34/3.33
54 HS65 8/9 10/11 16/16 .70/.78
55 HS70 36/- 39/-- 39/-- 3.33/-
56 HS71 5 6/9 9/9 .53/.67
57 HS74 10/26 15/48 14/28 1.17/2.68

* Failed to solve the problem.
Converged to a different minimizer.

36

TABLE 2 (CONT.)
Numerical results

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (s)

58 HS75 6/8 10/11 7/9 .72/.90
59 HS78 10/10 14/14 11/11 1.15/1.15
60 HS80 8/8 10/10 8/8 .92/.92
61 Hs81 14/14 20/20 15/15 1.57/1.60
62 HS84 -*/4 -/5 -/9 -/.51
63 RS85 17/14 18/I5 33/20 4.00/3.12
64 HS86 (COLVILLE 1) 6/7 8/8 III .62/.64
65 1187 (COLVILLE 6) 11/8 18/9 18/14 1.63/1.23
66 HS93 12/12 15/15 14/14 1.36/1.38
67 HS95 1/1 2/2 1/1 .15/.15
68 HS96 1/1 2/2 1/1 .17/.15
69 HS97 3/3 6/6 3/3 .40/.41
70 HS98 3/3 6/6 8/8 .43/.44
71 HS99 23/- 44/- 74/- 3.99/-
72 HSI00 14/14 29/29 18/18 2.07/2.02
73 HS104 18/18 20/20 23/23 3.36/3.37
74 HS105 43/-' 61/- 971- 27.14/-
75 HS108 (HEXAGON) 24/32 45/49 57/87 6.78/9.36
76 1S109 11/10 13/11 25/29 3.23/3.26
77 HS10 6/6 9/9 24/15 .78/.69
78 HS111 41/49 64/75 44/52 8.08/9.05
79 HS112 (CHEMICAL EQ.) 19/-* 39/- 54/- 2.78/-
80 113 14/16 19/23 38/36 3.12/3.41
81 114 18/16 19/24 36/33 3.81/3.60
82 HSI17 (COLVILLE 2) 17/18 21/27 96/39 6.75/5.34
83 HS118 (LC PROBLEM) 4/4 6/6 20/20 1.35/1.40
84 HS119 (COLVILLE 7) 12/17 16/19 41/47 4.25/5.60
85 DEMBO lB 281/-* 437/- 296/- 75.46/-
86 DEMBO 2-HS83 4/4 6/6 4/4 .54/.54
87 DEMBO 3 9/8 11/9 37/20 2.01/1.78
88 DEMBO 4A 19/19 23/23 24/24 3.53/3.31
89 DEMBO 4C 13/13 15/1p U/,ljj 3.10/3.20
90 DEMBO 5-HS106 17/18 21/24 30/31 2.90/3.04
91 DEMBO 6-HS116 36/43 96/69 144/248 21.84/29.65
92 DEMBO 7 19/12 24/15 126/68 15.54/9.82
93 DEMBO 8A 33/42 85/118 105/99 7.52/9.17
94 DEMBO 8B 29/29 69/71 88/73 6.51/6.45
95 DEMBO 8C 25/27 60/68 89/65 6.19/6.06
96 OPF 18/17 19/18 53/51 468.12/456.10
97 GBD EQUILIBRIUM MOD. 5/6 6/7 37/26 6.22/6.10
98 WEAPON ASSIGNMENT 96/73 98/76 244/170 120.78/114.93
99 STRUCI1OKON 18/17 34/30 65/42 13.67/11.73

100 STRUCE10KON 26/29 49/67 87/84 17.68/20.75
101 STRUCIIOVAN 23/19 41/34 54/51 16.30/13.85
102 STRUCEIOVAN -*/24 -/48 -/91 -/19.44
103 STRUCI25006 42/37 68/62 147/85 92.44/80.99
104 STRUCE25006 20/28 32/36 178/95 357.83/260.79
105 STRUCI25DAT 11/12 19/21 24/22 24.75/27.11
106 STRUCE25DAT 52/21 106/37 687/65 647.13/191.44
107 STRUCI36DAT 23/20 38/34 59/46 120.79/108.02
108 STRUCE36DAT 29/30 53/62 87/90 971.16/1021.87
109 STRUCi63040 117/112 211/202 6116/3091 8182.13/7159.03
11o STRUCE63040 375/-' 794/- 3545/- 77286.64/-
III STRUCI63060 - 1/98 -/244 -/3899 -/8281.02
112 STRUCE63060 63/115 150/316 6675/3407 25090.15/33228.42
113 STRUCI63DAT 246/136 354/412 9043/2060 12591.61/11424.54
114 STRUCE63DAT 52/72 86/145 8049/2858 41793.84/22740.66

Failed to solve the problem.
Converged to a different minimizer.

7 References 37

7. References

[Big72] M.C. Biggs (1972), Constrained minimization using recursive equality quadratic program-
ming, in: F.A. Lootsma, Ed., Numerical Methods for Nonlinear Optimization (Academic
Press, London/New York).

[BT84] P.T. Boggs and J.W. Tolle (1984), A family of descent functions for constrained optimization,
SIAM Journal on Numerical Analysis 21 1146-1161.

[BTW82] P.T. Boggs, J.W. Tolle and P. Wang (1982), On the local convergence of quasi-Newton
methods for constrained optimization, SIAM Journal on Control and Optimization 20 161-
171.

[BH89] J.V. Burke and S-P. Han (1989), A robust sequential quadratic programming algorithm,
Mathematical Programming 43 277-303.

[BN88] R.H. Byrd and J. Nocedal (1988), An analysis of reduced Hessian methods for constrained
optimization, Report CU-CS-398-88, Department of Computer Science, University of Col-
orado.

[CM871 P.H. Calamai and J.3. Mor6 (1987), Projected gradient methods for linearly constrained
problems, Mathematical Programming 39 93-116.

[CDT85] M.R. Celis, J.E. Dennis, Jr. and R.A. Tapia (1985), A trust region strategy for nonlinear
equality constrained optimization, in: P.T. Boggs, R.H. Byrd and R.B. Schnabel, Eds.,
Numerical Optimization 1984 (SIAM, Philadelphia).

[Dem76) R.S. Dembo (1976), A set of geometric programming test problems and their solutions,
Mathematical Programming 10 192-213.

[DT85] R.S. Dembo and U. Tulowitzki (1985), Sequential truncated quadratic programming methods,
in: P.T. Boggs, R.H. Byrd and R.B. Schnabel, Eds., Numerical Optimization 1984 (SIAM,
Philadelphia).

[Fle70] R. Fletcher (1970), A class of methods for nonlinear programming with termination and con-
vergence properties, in: J. Abadie, Ed., Integer and Nonlinear Programming (North Holland,
Amsterdam).

[Fle85] R. Fletcher (1985), An 1i penalty method for nonlinear constraints, in: P.T. Boggs, R.H.
Byrd and R.B. Schnabel, Eds., Numerical Optimization 1984 (SIAM, Philadelphia).

[Fie87] R. Fletcher (1987), Practical Methods of Optimization (John Wiley and Sons, Chichester/New
York/Brisbane/Toronto/Singapore).

[Fra88] C. Fraley (1988), Software performance on nonlinear least-squares problems, SOL Report
88-17, Department of Operations Research, Stanford University.

[GMSW86a] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright (1986), User's guide for NPSOL (Ver-
sion 4.0): a FORTRAN package for nonlinear programming, Report SOL 86-2, Department
of Operations Research, Stanford University.

[GMSW86b] P.E. Gifl, W. Murray, M.A. Saunders and M.H. Wright (1986), Some theoretical properties
of an augmented Lagrangian merit function, Report SOL 86-6R, Department of Operations
Research, Stanford University.

[GMSW88] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright (1988), Inertia-controlling methods
for quadratic programming, Report SOL 88-3, Department of Operations Research, Stanford
University. (To appear in SIAM Review.)

tGMW81) P.E. Gill, W. Murray and M.H. Wright (1981), Practical Optimization (Academic Press,
London/New York).

[Ilan76] S.-P. Han (1976), Superlinearly convergent variable metric algorithms for general nonlinear
programming problems, Mathematical Programming 11 263-282.

38

[HS81] W. Hock and K. Schittkowski (1981), Test examples for nonlinear programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 187 (Springer-Verlag, Berlin/Hei-
delberg/New York).

[Mu69] W. Murray (1969), An algorithm for constrained minimization, in: R. Fletcher, Ed., Opti-
mization (Academic Press, London/New York).

[MS82] B.A. Murtagh and M.A. Saunders (1982), A projected Lagrangian algorithm and its imple-
mentation for sparse nonlinear constraints, Mathematical Programming Study 16 84-117.

[Po78] M.J.D. Powell (1978), A fast algorithm for nonlinearly constrained calculations, in: O.L.
Mangasarian, R.R. Meyer and S.M. Robinson, Eds., Nonlinear Programming 3 (Academic
Press, New York).

[Po87] M.J.D. Powell (1987), Methods for nonlinear constraints in optimization calculations, Pro-
ceedings of the 1986 IMA/SIAM Meeting on "The State of the Art in Numerical Analysis",
Clarendon Press, Oxford.

[PY86) M.J.D. Powell and Y. Yuan (1986), A recursive quadratic programming algorithm that uses
differentiable exact penalty functions, Mathematical Programming 35 265-278.

[Pr89] F.J. Prieto (1989), Sequential quadratic programming algorithms for optimization, Report
SOL 89-7, Department of Operations Research, Stanford University.

[Rin88] U.T. Ringertz (1988), A mathematical programming approach to structural optimization,
Report No. 88-24, Dept. of Aeronautical Structures and Materials, The Royal Institute of
Technology, Stockholm.

[Rob74] S.M. Robinson (1974), Perturbed Kuhn-Tucker points and rates of convergence for a class of
nonlinear programming algorithms, Mathematical Programming 7 1-16.

[Sch8l] K. Schittkowski (1981), The nonlinear programming method of Wilson, Han and Powell with
an augmented Lagrangian line search function, Numerische Mathematik 38 83-114.

[Wil63J R.B. Wilson (1963), A simplicial algorithm for concave programming, Ph.D. Thesis, Harvard
University.

[Wri76] M.H. Wright (1976), Numerical methods for nonlinearly constrained optimization, Ph.D.
Thesis, Stanford University.

REPORT DOCUMENTATION PAGE OMs No. 0,704.018

01CP6000 More" #at~ thur cawit of o ralhtio" * I simatee to owwgg I lo a e oseg mrwiug trie tI" fo 1 W nq Iii! toft. "OuCnlw 9110 A W Eats
vatft"A, $Rd me-Ataltn-uf tee Oa t c0mEimfq eW ftg th e data nt.Oe one CohafiU 0 bawRo the toroee .utmmet o gar oof -f rm t
colgof of latwmstam". ucIda MrsltO~ oweagm e "tl v . tO waesl"ton "0eer s Wr~me ovwtotv fo i~fofmet.0" 0ovwe. oft 440of. 1% is ffAV
Dow"i phghwav *"a@1W IttA Z))2bdt h Of' 1Meqm- a~ ,1 'WWW Rse~fte INoo (019 IO wtu OC 20%0)
1. AGENCY USE ONLY L040e bink) 2. REPORT OATE i. REPORT TYPE AND DATES COVERED

I September 1990,7 Technical Re ort
4. TITLE AND SUITITLE S. FUNDING NUMBERS

A Sequential Quadratic Programming Algorithm Using Grant N00014-90-J-1242
an Incomplete Solution of the Subproblem

6. AUTHOR(S) I

Walter Murray and Francisco J. Prieto

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBRIE

Department of Operations Research - SOL
Stanford University 1111MA
Stanford, CA 94305-4022

9. SPONSORING MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research - Department of the Navy SOL 90-12
800 N. Quincy Street
Arlington, VA 22217

12a. OiSTRi.jT-0N AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

UL
UNLIMITED

13 ABSTRACT (PJmimum 200 wOrCS)

A feature of current sequential quadratic programming (SQP) methods to solve nonlinear con-

strained optimization problems is the necessity at each iteration to solve a quadratic program (QP). We

show that if the QP subproblem is convex and an active-set method is used to solve it, then there exist

iterates other than the minimizer that may be used to define a suitable search direction. None of the

usual properties of an SQP method are compromised by the new definition of the search direction.

We derive some new properties for an SQP method that uses a particular augmented Lagrangian

merit function. Specifically we show, under suitable additional assumptions, that the rate of convergence
is superlinear. We also show that the penalty parameter used in the merit function is bounded.

14. SUJET TERMS iS. NUMBER OF PAGES

quasi-Newton; nonlinear programnming; 38 pp.

sequential quadratic programming. '1. PRICE CODE

1?. SECURiTY CLASSIFICATION 11. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF AUSTRACI
OF REPORT OF THIS PAGE OF ABSTRACT SAR
UNCLASSI FIED III_ I

IdSN 7S~G.31.26O.S5.~S!YacarO ' 9a'~8
etc :...

